Concept information
Preferred term
CLONO2
Definition
- The NO2-ClO-ClONO2-BrO instrument is composed of two separate instruments: A laser-induced fluorescence instrument for the detection of NO2 and a thermal dissociation/resonance fluorescence instrument for the detection of ClO, ClONO2 and BrO. The NO2 detection system uses laser-induced resonance fluorescence (LIF) for the direct detection of NO2. Ambient air passes through a detection axis where the output of a narrow bandwidth (0.06 cm-1), tunable dye laser operating near 585 nm is used to excite a rovibronic transition in NO2. The excited NO2 molecules are either quenched by collision with air or fluorescence. The NO2 fluorescence is strongly red-shifted, with emission occurring over a broad range of wavelengths from 585 nm to the mid-infrared. The specificity of the technique is accomplished by tuning the laser frequency on and off resonance with a narrow spectral feature (0.04 cm-1) in the NO2 absorption spectrum. The difference between the fluorescence signal on and off resonance is related to the mixing ratio of NO2 through laboratory and in-flight calibrations. The observations are determined with an accuracy (1 sigma) of ±10% ±50 pptv, precision (1 sigma) of ±40 pptv, and a reporting interval of 10 seconds. Higher resolution (0.25 sec) data available on request. The halogen detection system uses gas-phase thermal dissociation of ambient ClONO2 to produce ClO and NO2 radicals. The pyrolysis is accomplished by passing the air sampled in a 5-cm-square duct through a grid of resistively heated silicon strips at 10 to 20 m/sec, rapidly heating the air to 520 K. The ClO fragment from ClONO2 is converted to Cl atoms by reaction with added NO, and Cl atoms are detected using ultra-violet resonance fluorescence at 118.9 nm. A similar detection axis upstream of the heater provides simultaneous detection of ambient ClO. An identical twin sampling duct provides the capability for diagnostic checks. The flight instrument is calibrated in a laboratory setting with known addition of ClONO2 as a function of pressure, heater temperature and flow velocity. The concentration of ClONO2 is measured with an accuracy and detection limit of ±20% and 10 pptv, respectively, in 35 seconds (all error estimates are 1 sigma). The concentration of ClO is measured with an accuracy and detection limit of ±17% and 3 pptv, respectively, in 35 seconds. (en)
Broader concept
Change note
- 2022-04-18 12:28:46.0 [tstevens] Insert Concept add broader relation (CLONO2 [74e78bef-2b00-4f6d-b422-8644db6a6e31,894376] - Chemical Meters/Analyzers [3d25724b-832f-4a61-b0b2-4f2ccecdba94,885712]);
- 2022-04-18 12:30:02.0 [tstevens] insert AltLabel (id: null category: primary text: Chlorine Nitrate Instrument language code: en); insert Definition (id: null text: The NO2-ClO-ClONO2-BrO instrument is composed of two separate instruments: A laser-induced fluorescence instrument for the detection of NO2 and a thermal dissociation/resonance fluorescence instrument for the detection of ClO, ClONO2 and BrO. The NO2 detection system uses laser-induced resonance fluorescence (LIF) for the direct detection of NO2. Ambient air passes through a detection axis where the output of a narrow bandwidth (0.06 cm-1), tunable dye laser operating near 585 nm is used to excite a rovibronic transition in NO2. The excited NO2 molecules are either quenched by collision with air or fluorescence. The NO2 fluorescence is strongly red-shifted, with emission occurring over a broad range of wavelengths from 585 nm to the mid-infrared. The specificity of the technique is accomplished by tuning the laser frequency on and off resonance with a narrow spectral feature (0.04 cm-1) in the NO2 absorption spectrum. The difference between the fluorescence signal on and off resonance is related to the mixing ratio of NO2 through laboratory and in-flight calibrations. The observations are determined with an accuracy (1 sigma) of ±10% ±50 pptv, precision (1 sigma) of ±40 pptv, and a reporting interval of 10 seconds. Higher resolution (0.25 sec) data available on request. The halogen detection system uses gas-phase thermal dissociation of ambient ClONO2 to produce ClO and NO2 radicals. The pyrolysis is accomplished by passing the air sampled in a 5-cm-square duct through a grid of resistively heated silicon strips at 10 to 20 m/sec, rapidly heating the air to 520 K. The ClO fragment from ClONO2 is converted to Cl atoms by reaction with added NO, and Cl atoms are detected using ultra-violet resonance fluorescence at 118.9 nm. A similar detection axis upstream of the heater provides simultaneous detection of ambient ClO. An identical twin sampling duct provides the capability for diagnostic checks. The flight instrument is calibrated in a laboratory setting with known addition of ClONO2 as a function of pressure, heater temperature and flow velocity. The concentration of ClONO2 is measured with an accuracy and detection limit of ±20% and 10 pptv, respectively, in 35 seconds (all error estimates are 1 sigma). The concentration of ClO is measured with an accuracy and detection limit of ±17% and 3 pptv, respectively, in 35 seconds. language code: en);
URI
https://gcmd.earthdata.nasa.gov/kms/concept/74e78bef-2b00-4f6d-b422-8644db6a6e31
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}