Concept information
Preferred term
LI Neph
Definition
- The laser imaging nephelometer measures the unpolarized scattering phase function of an aerosol ensemble using diode lasers at 375 and 405 nm. Scattered light from the bulk aerosol in the instrument is imaged onto a charge-coupled device (CCD) using a wide-angle field-of-view lens, which allows for measurements at 4–175∘ scattering angle with ∼ 0.5∘ angular resolution. Along with a suite of other instruments, the laser imaging nephelometer sampled fresh smoke emissions both directly and after removal of volatile components with a thermodenuder at 250 ∘C. The total integrated aerosol scattering signal agreed with both a cavity ring-down photoacoustic spectrometer system and a traditional integrating nephelometer within instrumental uncertainties. We compare the measured scattering phase functions at 405 nm to theoretical models for spherical (Mie) and fractal (Rayleigh–Debye–Gans) particle morphologies based on the size distribution reported by an optical particle counter. (en)
Broader concept
- NEPHELOMETERS (en)
Change note
- 2023-06-16 10:31:48.0 [tstevens] Insert Concept add broader relation (LI Neph [e0911bb8-dabd-4cd9-b7de-04e15d14aa62,1350578] - NEPHELOMETERS [c39f54a3-efd0-4596-8d5b-fe7ab519d13f,1342638]);
- 2023-06-16 10:33:01.0 [tstevens] insert AltLabel (id: null category: primary text: Laser Imaging Nephelometer language code: en); insert Definition (id: null text: The laser imaging nephelometer measures the unpolarized scattering phase function of an aerosol ensemble using diode lasers at 375 and 405 nm. Scattered light from the bulk aerosol in the instrument is imaged onto a charge-coupled device (CCD) using a wide-angle field-of-view lens, which allows for measurements at 4–175∘ scattering angle with ∼ 0.5∘ angular resolution. Along with a suite of other instruments, the laser imaging nephelometer sampled fresh smoke emissions both directly and after removal of volatile components with a thermodenuder at 250 ∘C. The total integrated aerosol scattering signal agreed with both a cavity ring-down photoacoustic spectrometer system and a traditional integrating nephelometer within instrumental uncertainties. We compare the measured scattering phase functions at 405 nm to theoretical models for spherical (Mie) and fractal (Rayleigh–Debye–Gans) particle morphologies based on the size distribution reported by an optical particle counter. language code: en);
URI
https://gcmd.earthdata.nasa.gov/kms/concept/e0911bb8-dabd-4cd9-b7de-04e15d14aa62
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}